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Abstract— Much of the morbidity and disability associated 

with industrial work settings arise from accidents involving 

humans and robots. Force Myography (FMG) is a potential 

technique to be used as an additional control measure for safer 

human-robot interaction without the need for robot hardware 

modification or replacement. The FMG signals represent the 

volumetric changes in the forearm due to muscle contraction, 

which were acquired using a Force Sensitive Resistor strap. A 

1DOF torque sensor was used to model the point of interaction 

between a robot and a human. The following isolated upper 

extremity movements were considered: forearm pronation-

supination, wrist flexion-extension and wrist radial-ulnar 

deviation. Torque regression models based on FMG data were 

created with two machine learning methods: Support Vector 

Machine (SVM) and Artificial Neural Network (ANN). 

Performance indices were defined and used for the 

comparative study between the two learning methods. The 

results demonstrated the feasibility of using FMG to estimate 

torque with accuracies around 90%. Both methods also 

demonstrated strong intra- and inter- participant consistency 

of FMG signals. The results will be beneficial for measuring the 

contact force between human and robot during their 

interaction. 
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I. INTRODUCTION 

Applied research has shown that efficiency, flexibility, 
and quality in automated manufacturing plants, such as 
automotive assembly lines, can be highly improved through 
close cooperation between workers and robotic manipulators 
[1]. As a consequence, the past decade has seen a growing 
interest in bringing humans and robots closer together in the 
manufacturing environment [2, 3]. World-leading automation 
corporations, such as ABB, KUKA and Reis Robotics, have 
been developing robotic systems to cooperate with workers, 
without using separating safeguards, to maximize 
cooperation and throughput [4, 5]. 

While this economically-driven need has fostered the 
development of cooperative manipulators, accidents in the 
work place do still represent a serious concern that has highly 
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hampered the introduction of collaborative robots. In fact, 
workers operating and maintaining automated machinery are 
at risk of serious injuries. US statistics suggest that 18,000 
amputations and over 800 fatalities in the United States each 
year are attributable to such causes [6]. The most common 
cause of work-related injury is exposure to inanimate 
mechanical forces, which accounts for 46% of work related 
hospitalizations. The most common bodily location being 
injured is the wrist or hand (38%). Furthermore, 4.9% of 
wrist and hand injuries involve amputations [7]. A study 
performed in the US confirms that injuries to the hand and 
wrist are particularly high in automotive plants, especially in 
foundries and assembly plants [8].  

The ultimate goal of the research in this area is to reduce 
the chances of injury where human workers and robots 
interact in automotive manufacturing facilities. During these 
worker-robot interactions, the angle and distance between the 
robotic arms and worker bodies is continuously changing [9] 
which make it a challenge to measure that distance. Several 
techniques exist for human detection and estimation of the 
relative locations so that collisions can be avoided [10].  

First, to prevent collisions between humans and uncaged 
robots, a vision system is used to detect humans around the 
work space of a robot. Once a human is detected, a default 
sequence of robot control commands is executed to ensure 
worker safety [11, 12, 13]. Commonly, a fixed distance 
around the robot is assumed to be the safeguard zone. While 
cameras can be used for this purpose, they are still bulky and 
require high computational resources, which therefore 
prevent using them as wearable sensors in this application. 
Another practical limitation is worker privacy issues which 
can be a concern when cameras are used. Cameras also have 
a limited field of view even if they are mounted at relatively 
close distances (i.e. few meters) from the area of interest [14]. 

An alternative technique for detection of humans is using 
ultrasonic transmitters and receivers. Industrial operations 
such as impact, bending, grinding and drilling, and fluid or 
air sprays produce a significant amount of ultrasound noise; 
ultrasonic detection therefore requires operation at relatively 
high frequencies [15]. Ultrasound transceivers are usually 
directional and should be arranged into an array to obtain a 
reliable image of the surroundings [16]. Even though humans 
are relatively large targets, the amount of ultrasound 
reflections from them is quite small because humans are soft 
targets that absorb the majority of ultrasonic energy. Because 
of the aforementioned shortcomings, the use of ultrasound 
transceivers is challenging and often requires a significant 
amount of signal processing. 

The third technique mainly aims at detecting collisions of 
the hand with moving objects. Therefore, both position and 
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applied force of the hand should be monitored. A data-glove, 
such as the Cyber glove [17] which incorporates both inertial 
measurement units (IMUs) and flexible bend sensors, could 
be used to measure the position. However, data-gloves limit 
the tactile sensation of the user’s fingers.  

Furthermore, current active research focuses on processing 
bio-signals such as surface electromyography (sEMG) and  
electroencephalography (EEG) as controller inputs for robots, 
prosthetic devices and exoskeletons [18, 19, 20] also for 
predicting both hand posture and force [21, 22, 23, 24]. Even 
though this method frees the hand and allows full tactile 
sensation, it requires expensive and sizable equipment which 
also needs computationally expensive signal processing for 
detecting hand position and force.  

Towards a safer human-robot interaction system, the 

objective of this work is to establish the feasibility of 

determining the magnitude of the torque in three directions 

using the FMG signals. Since it is inexpensive, lightweight 

and esthetically unobtrusive. The intention is that the FMG 

signals can be used as a part of a larger robot control system 

to monitor the force interactions during human robot 

cooperation. The rest of this paper is organized as follows: 

Section II describes the tools used in the experiment; Section 
III highlights the procedure of the data collection protocol; 

Section IV describes the data processing and the learning 

methods used; and Section V presents the quantitative 

findings and areas for further work. Conclusions are 

discussed in Section VI. 

II. PROPOSED SYSTEM & EXPERIMENTAL SETUP 

A. Force Sensing Resistor (FSR) Strap  

A custom fabricated sensor strap composed of 16 force 
sensing resistors (FSRs) was used to detect the FMG signals 
related to the functional state of the participant’s hand. The 
band length is about 38 cm, with a 1.7 cm distance between 
each two sensors in the band. With the help of Velcro tapes 
in both sides of the band, it can be fixed on the participant’s 
forearm. The FSRs were incorporated into a voltage divider 
circuit. The base resistor in the voltage divider circuit 
controls the sensitivity of the FSRs. A Bluetooth module on 
the circuit control board was used to transmit the data from 
the strap to an on-site computer via custom LabVIEW 
software.  

B. Mechanical Setup 

Three custom-built rigs were designed to measure the 
isolated upper extremity movements: forearm pronation-
supination, wrist flexion-extension and wrist radial-ulnar 
deviation. A Transducer Techniques torque sensor (TRT-
100), was placed where its axis of rotation is aligned with the 
axis of rotation of the movement. The participant’s forearm 
was secured to the rig using the Velcro tapes to restrict arm 
movement. The first setup was used to collect the wrist 
pronation and supination data. It consists of two aluminum 
plates with the torque sensor connecting them to each other 
as in Fig. 1. One of these plates is fixed to a table, while the 
other plate holds a handle that the participant holds on in 
order to exert isometric torque in the pronation-supination 
direction. The second setup was used to collect the wrist 

flexion and extension deviations. As shown in Fig. 2, the 
setup is composed of two parts: a wooden base that holds the 
participant’s forearm and two aluminum plates connected to 
each other through the same torque sensor, one of these 
plates holds the participant’s hand. Fig.3 shows the forearm 
radial-ulnar data collection setup, which is mainly the same 
as the second setup except the torque sensor is placed under 
the participant’s wrist to capture the radial-ulnar deviations.   

The torque sensor in each setup was connected to an 
amplifier from Transducer Techniques (LCA-RTC) to adjust 
the sensor’s output and increase the sensitivity of the sensor. 
The output of the amplifier is connected to data acquisition 
device (DAQ) from National Instruments (NI USB 6210). 

C. Software  

Custom LabVIEW software was used to collect both the 
applied torque and the FMG signals with a visual chart 
showing the exerted torque to guide the participant during the 
data collection session. This software established a Bluetooth 
connection with the band to acquire the FMG readings and 
simultaneously read the torque value with the DAQ. The data 
was acquired at a sampling frequency of 10 HZ. The 
collected data was then saved in a comma-separated values 
(CSV) file for offline processing and analysis. 

A custom MATLAB® script was designed for processing 
the data, training and testing the regression model. The 
details of the data processing and regression model are 
described in Section IV. 

III. EXPERIMENTAL PROTOCOL 

An experimental protocol was designed to collect the 
FMG data and the exerted torque value to study the viability 
of using the FMG-based sensing system as a part of a robot 
controlling system. The previously defined setups were used 
to collect three degree of freedom data created with isolated 
upper extremity movements:  forearm pronation-supination, 
wrist flexion-extension and wrist radial-ulnar.  

Figure 1: The setup for collecting pronation - supination data. 

 

 
Figure 2: The setup for collecting flexion-extension data. 
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Experimental data was collected from five healthy 
participants. Their average age was 25.2 years old and the 
average circumference of their forearm on the muscle belly, 
where the FSRs band was placed, was25 cm. The 
characteristics of the volunteers are detailed in Table I. Each 
volunteer provided written informed consent to participate, 
and this study was approved by the Department of Research 
Ethics of Simon Fraser University.    

Three data collection sessions for each wrist/forearm 
deviations were carried out. Each session lasted for one 
minute to minimize the muscle fatigue. First, the band was 
tied on the muscle belly of the right forearm of each 
participant with the help of Velcro tapes. Then, they rested 
their hands on the defined place of the custom rig. After that, 
the participant alternated pronating and supinating the 
forearm to form an approximate sinusoidal wave, for one 
minute. The previously described procedure was repeated for 
the data collection of wrist flexion-extension and wrist radial-
ulnar deviations, for three sessions. In every data collection 
session, there was a visual chart on LabVIEW that displays 
the exerted torque value with the result wave to visually 
guide the participant to maintain the sinusoidal wave form. 

IV. DATA PROCESSING AND ANALYSIS 

A. Data processing 

Initially, the data from pronation-supination, flexion-

extension, and radial-ulnar sessions were merged to be 

processed as a single dataset to predict multiple directions 

torque. The input in the combined data set is the FMG 

channels and the target is the torque values in three 

directions. For each sample in the data set, one out of three 
output columns has a value while the others are zeros e.g. if 

the first output has a value of 4 Nm, that means the input is 

the FMG signals corresponding to the pronation torque with 

a value of 4 Nm and the other two outputs are zeros that 

indicates the flexion-extension and radial-ulnar torques are 

zero. Through that data set, we can estimate the torque 

magnitude and direction across the three deviations data. A 

moving average filter with a window size equal to 3 is 
applied to each output to smooth the signals. After that, both 

of the FMG data and the three torque values were 

normalized to the maximum possible sensor value. Fig. 4 

shows our proposed FMG signal processing scheme. 

 The FMG signals correspond to volumetric changes in 

the forearm that result from the relaxation/contraction of the 

forearm muscles during exerting force or torque [25]. The 

assumption behind FMG is that the generated force patterns, 

and thus volumetric changes, are distinct enough to 

discriminate between various wrist/hand/finger gestures and 

motions. The relation between the FMG signals and the 

exerted torque can be observed in Fig.5 where the FMG 
signals are centralized to the mean value. Two learning 

methods are used to capture this relation automatically, as 

there are different patterns of the FMG readings with the 

change of the torque direction.   

B.  Model production 

The acquired data were analyzed for regression. All the 

machine learning methods that were used need to be first 

trained on a portion of the collected data where the target 

(the  torque values) are known; this portion of data called the  

 
 

 

 

 

 

 

 

 

 

Figure 3: The setup for collecting radial - ulnar data. 

TABLE I. PARTICIPANTS’ STATISTICS. 

 Gender Age 

Proximal 

forearm size 

(cm) 

Volunteer 1 Male 30 25 

Volunteer 2 Male 22 25 

Volunteer 3 Male 25 26 

Volunteer 4 Female 27 24 

Volunteer 5 Female 22 25 

Average ------- 25.2 25 

STD ------- 3.4 0.71 

 

 

 

 

Figure 4: Signal processing scheme. 

 

829



  

training set. Then, in order to assess the obtained models, 

they are tested on a separate set of data, called the testing 

set. In the experiments, the data was divided into 60% as the 

training set and the rest as the testing set. 

The input space to the machine learning models is 

variable that is based on the volunteer’s wrist size that in 

turn determines the number of usable sensors. The average 

number of the input data is 13 sensors readings out of 

sixteen sensors in the FSR band. 

1. Support Vector Regression (SVR) 

Support Vector Regression (SVR) is one of the Support 

Vector Machine (SVM) techniques which used for handling 

regression problems. SVR maps the input data to a higher-

dimensional feature space where the data can be separated 

using the linear regression [26, 27]. 
The LIBSVM library [28] in the MATLAB® 

environment was used for offline processing of the collected 

data. Nu Support Vector Regression (υ-SVR) was used, as 

the υ parameter used to control the number of support 

vectors in the resulting model. We used the Radial Basis 

Function (RBF) kernel as it enables nonlinear mapping for 

the input data. Besides it has a small number of hyper 

parameters, which reduces model selection complexity [29]. 

10-fold cross validation and grid search are used to find the 

optimal values for the model parameters (cost and gamma) 

[30]. 

2. Artificial Neural Network (ANN) 

Artificial Neural Networks (ANN) are probably the most 
popular machine learning algorithm used for both regression 
and classification [31].  In the experiment, a two-layer feed-
forward network with 100 sigmoid hidden neurons and three 
linear output neurons was used. Levenberg-Marquardt 
training was also used since it is much faster [32]. The 
number of the hidden nodes was determined empirically. 
Network structure is represented in Fig. 6, where n is the 
number of the processed FMG channels used as inputs to the 
ANN, TP-S , TF/E , and TR/U  are the estimated torque values in 
the pronation-supination, flexion-extension, and radial-ulnar 
directions, respectively. 

MATLAB® Neural Network toolbox [33] was used for 
training and testing the ANN models. To overcome the local 
minima problem, the training phase, for each model, was 
repeated ten times and the best model was chosen from those 

repetitions [34]. Also, early stopping and regularization were 
used to improve the generalization and reduce the likelihood 
of overfitting [33].  

C. Analysis 

Two experiments using both of SVR and ANN are carried 
out to compare between them. The first one was motivated by 
exploring the consistency of the FMG signals across different 
data collection sessions in three directions. 10-fold cross 
validation for the whole data is carried out and the standard 
deviation of the test accuracy across the ten repetitions was 
calculated. 

The second experiment aims at exploring the ability of 
the FMG signal to estimate the torque values in three 
directions. The data was divided into 60% for training and 
40% for testing. The SVM and ANN models were trained 
using the training data. Then, the result models were used to 
predict the torque values from the FMG signals in the testing 
data. The testing accuracy can be considered as a measure for 
the generalization ability of the resulting models. 

V. EXPERIMENTAL RESULTS AND DISCUSSIONS 

The performance of the resulting models was measured 
by comparing the estimated torque values in three directions 
with the actual torque values in the testing set. Two accuracy 
metrics were chosen to compare the performance of different 
models: the coefficient of determination (R2) and the 
normalized root mean square error (NRMSE) [35]. R2 is a 
number that indicates how well the model fits the data, R2 of 
1 indicates that the model perfectly fit the data and R2 of 0 
represents that the model doesn’t fit the data. NRMSE is a 

 
 

Figure 6: ANN structure 

 

 

 

 

Figure 5:  Example of the FSRs readings and the torque value in three different directions. 
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TABLE III.  SVM AND ANN TEST PERFORMANCE METRICS. 

 Pronation - supination Flexion - extension Radial - ulnar 

 SVM ANN SVM ANN SVM ANN 

 R2 NRMSE R2 NRMSE R2 NRMSE R2 NRMSE R2 NRMSE R2 NRMSE 

Participant 1 0.91 0.03 0.87 0.04 0.83 0.06 0.82 0.07 0.86 0.05 0.85 0.05 

Participant 2 0.90 0.04 0.84 0.05 0.83 0.07 0.80 0.06 0.92 0.04 0.94 0.03 

Participant 3 0.96 0.03 0.91 0.04 0.93 0.03 0.90 0.05 0.90 0.04 0.86 0.05 

Participant 4 0.92 0.04 0.89 0.04 0.90 0.05 0.89 0.07 0.90 0.04 0.89 0.06 

Participant 5 0.89 0.06 0.87 0.04 0.81 0.07 0.81 0.07 0.88 0.05 0.84 0.06 

Mean 0.92 0.04 0.88 0.04 0.86 0.06 0.84 0.06 0.89 0.04 0.88 0.05 

STD 0.03 0.01 0.03 0.004 0.05 0.02 0.05 0.009 0.02 0.005 0.04 0.01 

 

dimensionless metric which is a measure of the error 
percentage between the estimated and the actual torque 
values over the range of the actual torque vales. 

First, the test performance of 10-fold cross validation 
using SVR and ANN, is presented to study the consistency of 
the FMG signals across the ten repetitions as in each 
repetition, a different portion of the data was chosen for the 
testing. Table II shows the average R2 and the standard 
deviation from the ten repetitions for the five volunteers. The 
high accuracy (around 90%) and low standard deviation 
(around 0.02) seen in the 10-fold cross validation with two 
learning methods, suggest that the calculated torque models 
using FMG signals are consistent within a participant and 
across participants.  

For the second experiment, Table III depicts the test 
performance metrics for each volunteer using SVR and ANN, 
respectively. The system achieves an average accuracy of 
89% (STD = 0.03) across all the isometric deviations using 
the RBF-SVR. In addition, it achieves a comparable accuracy 
of 87% (STD = 0.02) across all torque directions using ANN. 
These results affirm the applicability of using the FMG 
signals for estimating the value of the isometric torque in 
three directions within different data collection sessions. The 
relation between the FMG and the exerted torque is captured 
very well regardless the change in the FMG pattern across 
different torque directions. Based on the scope of the 
experiment, SVM gives a better performance than ANN [36]. 

Another analysis has been done to explore the use of the 
FMG signals in predicting the torque direction. This study 
includes training the SVR model using the data of a torque 
direction and test that model using the data of another torque 
direction for example, the model trained using pronation-
supination data and test that model using flexion-extension 
data. Theoretically, the predicted value from the model 
should be zero as the test set is a different torque direction 
data. The preliminary results show an average accuracy 
across the three models for the five volunteers is 
0.008±0.001. It is not possible to make a concrete conclusion 
based on that result as the torque data in different directions 
should be collected simultaneously with the same placement 
of the FSR band which will be explored in the future.  

 

VI. CONCLUSION 

This paper explored the viability of using an FMG based 

sensing system for estimating the isometric torque for the 

combined data of forearm pronation-supination, wrist 

flexion-extension and wrist radial-ulnar. The data acquisition 

system for the FMG and torque values was introduced. The 

system achieved promising average accuracy from 10-fold 

cross validation and low standard deviation within and 

across the participants in the three directions which prove 

the consistency of the FMG signals. Additionally, another 

experiment was carried out through training the model with 

a 60% of the data and evaluating the result using 40% of the 

data as a measure for its generalization ability. The system 

reached an average accuracy of 89% and 87% using SVR 

and ANN, respectively. These results affirm the potential 

practical viability of using an FMG based sensing system in 

estimating the torque value in three directions which in turn 

can be used in detecting the contact force during human 

TABLE II. AVERAGE R2 FROM 10-FOLD CROSS VALIDATION USING SVR 

AND ANN. 

ID 
Metr

ics 

R2 pronation - 

supination 

R2 flexion - 

extension 

R2 radial - 

ulnar 

SVM ANN SVM ANN SVM ANN 

P1 
Mean 0.92 0.91 0.87 0.87 0.90 0.89 

STD 0.01 0.008 0.02 0.02 0.01 0.02 

P2 
Mean 0.93 0.91 0.86 0.85 0.95 0.95 

STD 0.02 0.01 0.04 0.01 0.007 0.003 

P3 
Mean 0.97 0.93 0.95 0.93 0.92 0.89 

STD 0.004 0.006 0.01 0.01 0.02 0.01 

P4 
Mean 0.92 0.91 0.95 0.92 0.92 0.92 

STD 0.008 0.01 0.02 0.01 0.02 0.008 

P5 
Mean 0.90 0.90 0.81 0.85 0.91 0.88 

STD 0.03 0.01 0.03 0.03 0.04 0.01 

All 

 

Mean 0.93 0.91 0.89 0.88 0.92 0.91 

STD 0.03 0.01 0.06 0.04 0.02 0.03 
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robot interaction. 
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